COURSE OUTLINE

1. GENERAL

2. 02.12.012				
SCHOOL	APPLIED ECONOMIC AND SOCIAL SCIENCES			
ACADEMIC UNIT	AGRIBUSINESS AND SUPPLY CHAIN MANAGEMENT			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	GEN509	SEMESTER 5th		
COURSE TITLE	Agricultural Business By-products and Waste Management- Environmental Impact Assessment			
INDEPENDENT TEACHI	INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	G CREDITS
		Lectures	4	5
COURSE TYPE	Special Background			
PREREQUISITE COURSES	NO			
LANGUAGE OF INSTRUCTION and EXAMINATIONS	Greek			
IS THE COURSE OFFERED for ERASMUS STUDENTS?	YES (in English)			
COURSE WEBSITE (URL)	https://oeclass.aua.gr/eclass/			

2. LEARNING OUTCOMES

Learning Outcomes

The course is the basic introductory course in the concepts of agricultural by-products and waste management. Analyzes issues of planning, programming, operation and control of the management of by-products and waste of agricultural enterprises. In addition, it highlights the strategic role and current trends.

Upon successful completion of the course the student will be able to:

- Identifies and classifies agricultural waste and by-products of primary production activities
- Looks for data for each category of waste by-product
- Selects-distinguishes appropriate treatment method depending on the characteristics of the waste as well as the by-product as well as their expected legal disposal
- Studies and designs the selected system on a case by case basis
- The implemented system operates
- Studies designs and implements waste reuse

General Competences

- Adaptation to new situations
- Decision making
- Autonomous work
- Teamwork
- Working in an international environment

- Project design and management
- Promotion of free, creative and inductive thought

3. SYLLABUS

Theoretical part

1. HISTORICAL BACKGROUND:

Hunter gatherer -Nomad, farmer-breeder-fisherman. The footprint of this trek.

2. CURRENT TIME

Modern forms of agriculture (conventional, organic, integrated). Human-environment interaction through these forms of agriculture.

3. WASTE

Definition of waste, classification of these (urban, agricultural, hazardous, etc.) species (liquid solids etc). Relevant European and National legal framework. List of waste.

By-products of agricultural holdings (Crop-animal-fishery production). Contrast with waste.

4. AGRICULTURAL WASTE

Definition of agricultural waste.

Categories of agricultural waste based on the production sector (agriculture, livestock, fisheries), based on the sector of economic activity (primary, secondary, tertiary sector).

By-products of agricultural-livestock and fishing holdings-units.

5. METHODS OF TREATMENT OF LIQUID AGRICULTURAL WASTE - BY-PRODUCTS

Location - Facilities - Produced Quantities of Waste.

Physical, Chemical, Microbial Characteristics of Waste - Legislative Framework.

Pre-treatment (grading, sand collection, fat collection, balancing).

Primary treatment (precipitation, flotation, chemical precipitation).

Secondary treatment (Organic in suspension or heterogeneous, aerobic).

Secondary treatment Biological anaerobic processes - biogas and energy production).

Tertiary treatment (phosphorus nitrogen removal).

Disinfection.

Natural Liquid Waste Treatment Systems.

6. METHODS FOR TREATMENT OF SOLID WASTE - BY-PRODUCTS

Location - Facilities - Produced Quantities of Waste.

Physical, Chemical, Microbial Characteristics of Waste - Legislative Framework

Fractionation.

Drying Beds.

Composting.

Combustion - energy production.

7. PRESENTATION OF METHODS AIMED AT REDUCTION OR CIRCULAR MANAGEMENT OR

NON-BURDENING THE ENVIRONMENT THROUGH BIODEGRADED MATERIALS.

8. DISPOSAL OF AGRICULTURAL WASTE TO THE ENVIRONMENT

Outflow of aerobic process.

Outflow of anaerobic process.

Composted material.

Three-phase olive mills.

Legislative framework.

TUTORIAL-LABORATORY SCHEME (2 hours per week)

STUDY ASSIGNMENT - STUDY STEPS

PROCEDURE FOR SELECTING A SUITABLE SYSTEM

STUDY DESIGN OF AGRICULTURAL WASTE - PRODUCTS (SOLID - LIQUIDS) TREATMENT SYSTEMS.

- Pre-treatment
- Sand collection
- Fat collection
- Balancing
- Floating
- Aerobic processes (activated sludge system)
- Aerobic processes (system of heterogeneous processes)
- Disinfection
- Anaerobic Processes Biogas Production
- Natural wastewater treatment systems
- Composting
- Disposal of treated wastewater into the soil
- Examples of applications other than those already mentioned (eg sprays and pesticide containers, olive mills, dairies, etc.).

4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face -to-face, Distance learning		
USE OF INFORMATION and	Support of the learning process through the		
COMMUNICATIONS	University's AUA Open eClass platform (integrated e-		
TECHNOLOGY	Course Management System)		
	Support of lectures using presentation software		
	Use of audiovisual material		
	Use of web applications		
	Communication with students: face-to-face at office		
	hours, email, eclass platform		
TEACHING METHODS	Activity	Workload	

Lectures (direct)	65
Laboratory Practice	
Essay Writing	18
Autonomous study	42
Advisory Support	
Examination	
Laboratory Examination	
Total	
(About 25 hours of study	125
per ECTS)	

STUDENT PERFORMANCE EVALUATION

The evaluation process is in the language that the course is taught (Greek or English) and consists of:

- i. Compulsory written final examination at the end of the semester (weighting factor 70% at least) which may includes:
- Multiple choice questionnaires
- Open-ended questions
- Problem solving
- Oral examination

Evaluation criteria: correctness, completeness, clarity

- ii. Optional written exam or essay during the semester (weighting factor 25%) which may includes:
 - Multiple choice questionnaires
 - Open-ended questions
 - Problem solving
 - Essay/report
 - Oral examination
 Evaluation criteria: correctness, completeness, clarity

Special learning difficulties:

Students with **special learning difficulties** in writing and reading (as they are certified and characterized by a competent body) are examined based on the procedure provided by the Department.

Specifically-Defined Criteria:

The evaluation criteria are made known during the first lesson and are clearly stated on the course website and the AUA Open e-class platform. The answers to the exam questions are posted on the AUA Open e-Class platform after the exam. The students are allowed to see their exam paper after its grading (during the announced office hours) and receive

5. ATTACHED BIBLIOGRAPHY

Suggested Bibliography in Greek Language:

- Αγγελάκης Ν., Tchobanoglous G. (1995) Υγρά απόβλητα, Πανεπιστημιακές Εκδόσεις
 Κρήτης, Ηράκλειο
- Αλμπάνης Τ., 2009, Ρύπανση και τεχνολογίες προστασίας περιβάλλοντος, Εκδόσεις
 Τζιόλα, Θεσσαλονίκη
- Βαβίζος Γ., Μερτζάνης Α., (2003): Περιβάλλον Μελέτες Περιβαλλοντικών Επιπτώσεων. 2η Έκδοση. Βιβλίο 345 σελ. Εκδόσεις Παπασωτηρίου, Αθήνα, ISBN 960-7530-03-9
- Γεωργακάκης Δημήτιος (2003) Διαχείριση Στερεών Αποβλήτων Τόμος Γ΄ Στερεά
- Γεωργικά Απόβλητα Ελληνικό Ανοικτό Πανεπιστήμιο, Πάτρα
- Γεωργακάκης Δημήτιος (2003) Διαχείριση υγρών Αποβλήτων Τόμος Γ΄ Υγρά γεωργικά Απόβλητα Ελληνικό Ανοικτό Πανεπιστήμιο, Πάτρα
- Γεωργακάκης, Δ. (2009). Διεργασίες Πρωτοβάθμιας επεξεργασίας γεωργοβιομηχανικών αποβλήτων και νερού. In Γ. Δ., Διαχείριση Γεωργοβιομηχανικών Αποβλήτων. Αθήνα: Γεωπονικό Πανεπιστήμιο Αθηνών
- Καλδέλης, Ι. Κ., & Κονδύλη, Α. Μ. (2005). Περιβαλλοντική και Βιομηχανική Ανάπτυξη.
 Μείζονα Περιβαλλοντικά Προβλήματα, Διαχείριση Αποβλήτων (Τόμ. 2ος). Αθήνα:
 Εκδόσεις Σταμούλη.
- ΚΥΑ 145116/11(ΦΕΚ.354/Β΄/8-3-2011). Καθορισμός μέτρων, όρων και διαδικασιών για την επαναχρησιμοποίηση επεξεργασμένων υγρών αποβλήτων και άλλες διατάξεις.
- Λυμπεράτος Γεράσιμος (2003) Διαχείριση Υγρών Αποβλήτων Τόμος Α΄ Αστικά Λύματα Ελληνικό Ανοικτό Πανεπιστήμιο, Πάτρα
- Λυμπεράτος, Γ., & Βαγενάς, Δ. (2012). Διαχείριση Υγρών Αποβλήτων. Αθήνα: Τζιόλα
- Λυμπεράτος Γεράσιμος Κωνσταντίνος Γιαπιτζάκης και Κωνσταντίνος Κομνίτσας (2004) Διαχείριση Υγρών Αποβλήτων Τόμος Β΄ Βιομηχανικά Υγρά Απόβλητα Ελληνικό Ανοικτό Πανεπιστήμιο, Πάτρα
- Νταρακάς, Ε. (2006). Επεξεργασία βιομηχανικών αποβλήτων . Θεσσαλονίκη: Εκδόσεις ΑΠΘ
- Μαρία Κ. Ντούλα, Federico Tinivella, Lose Luis Moreno Orteg, Βίκτωρ Α. Καββαδίας, Απόστολος Σαρρής, Σιδέρης Θεοχαρόπουλος, Miguel A. Sanchez-Monedero (2012) Ορθές Πρακτικές Διαχείρισης Αποβλήτων Ελαιοτριβείων Οδηγό ς Εφαρμογής LIFE07/ENV/GR/000280
- Παναγιωτακόπουλος Δ., 2007. Βιώσιμη διαχείριση αστικών στερεών απορριμμάτων.
 Εκδόσεις Ζυγός, Θεσσαλονίκη, 174 σελ
- Πανώρας, Α., & Ηλίας, Α. (1999). Άρδευση με Επεξεργασμένα Υγρά Αστικά Απόβλητα. Θεσσαλονίκη
- Παυλοστάθης, Σ., & Κυρίτσης, Σ. (1980). Ζωικά Απορρρίμματα, Διαχείριση, Χρησιμοποίηση, Προστασία Περιβάλλοντος . Αθήνα: Υπουργείο Γεωργίας, Υπηρεσία Ζωικής Παραγωγής και Ανωτάτη Γεωπονική Σχολή Αθηνών, Εργαστήριο Γεωργικών Κατασκευών.
- Σκορδίλης Αδαμάντιος, Κωνσταντίνο Κομνίτσας (2004) Διαχείριση Στερεών
- Αποβλήτων Τόμος Α΄ Οικιακά και άλλα μη επικίνδυνα Απόβλητα Ελληνικό Ανοικτό

- Πανεπιστήμιο, Πάτρα
- ΥΠΑΑΤ (2008) Εγχειρίδιο Ορθής γεωργικής πρακτικής για την ενδεδειγμένη αξιοποίηση της Ιλύος των αστικών Λυμάτων.

Suggested Bibliography in English Language:

- Crites, R. W., Reed, S. C., & Bastian, R. K. (2000). Land Treatment Systems for Municipal and Industrial Wastes. New York: Mc Graw-Hill.
- Crites, R., & Tchobanoglous, G. (1998). Small and Decentralized Wastewater
- Management Systems. McGraw-Hill.
- Asano, T. (1998). Wastewater Reclamation and Reuse. Water Quality ManagementLibrary, volume 10. Lancaster, USA: Technomic Publishing Company
- Metcalf, & Eddy. (1991). WASTEWATER ENGINEERING Treatment-Disposal-Reuse
- Third Edition.New York: McGraw-Hil.
- Reed, S. C., Crites, R. W., & Middlebrooks, J. E. (1988). Natural Systems for Waste
- Management and Treatment. New York: McGraw-Hill.
- Rynk, ,. R., van de Kamp, M., Willson, G. B., Singley, M. E., Richard, T. L., Kolega, J. J., Brinton, W. F. (1992). On-Farm Composting Handbook. NY: Northeast Regional Agricultural Engineering Service.
- Tcobanoglous, G., Theisen, H., & Samuel, V. A. (1993). Intergrated Solid Waste Management. Engineering Principlesand Management Issues. New York: Mc Graw Hill.
- W. A. Dick, (2000) Land Aplication of Agricultural Industrial and Municipal By Products (σσ. 387-408). Wisconsin, USA: Soil Science Society of America Inc. Book
- Series 6
- WHO, 1982, Rapid assessment of sources of air, water, and land pollution, WHO, Geneva.

Related academic Journals:

Instructor's Notes