COURSE LAYOUT

1. GENERAL					
SCHOOL	Animal Biosciences				
DEPARTMENT	Animal Science				
STUDY LEVEL	Bachelor				
COURSE CODE	504		SEMESTER	3 rd	
COURSE TITLE	Introduction in the Biochemistry of Animal Organisms				anisms
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS		ECTS	
	Theory: Lect	ures	2		
Laboratory		2			
					4
COURSE TYPE	Field of Science				
PREREQUISITES	-				
LANGUAGE	Greek				
IS THE COURSE OFFERED forERASMUS STUDENTS?	No				
COURSE WEB PAGE (URL)	-				

2. LEARNING OUTCOMES

Learning Outcomes

The course "Introduction in the Biochemistry of Animal Organisms" aims to familiarize students, in theoretical and practical level, with the biochemistry, i.e., the chemical reactions that take place in the living organisms.

In particular, the course aims to present the structures of macromolecules and how they interact with each other. It gives an introduction i) to the methodology and techniques for the study of macromolecules, ii) to enzymology and the biological role of enzymes, iii) to the flow of genetic information and the role of nucleic acids and, finally, iv) an introduction of the structure and function of biological membranes.

Furthermore, the objective is to combine the knowledge of biomolecules and the basic processes which are involved in basic metabolic pathways of the animal organisms.

Additionally, the course focuses on the understanding of the production, homeostasis, and consumption of energy to promote basic features of metabolic processes which are common and evolutionarily conserved in organisms and defined by the information encoded in their genomes.

The aim is to introduce the intermediary metabolism and its regulation together with a picture of the information flow from genes to proteins and the different types of RNA.

General Competenses

- Individual and group work
- Producing new research ideas

- Design and management of projects
- Promotion of free, creative, and inductive thinking
- Respect for the natural environment

3. COURSE CONTENT

compositions of food (feed) and animal organismStructural and functional classifications of proteins. Primary Struct linked by peptide bonds to form polypeptide chains. Secondary st chains can fold into regular structures such as the α-helix, the β-sl loops. Tertiary structure: water-soluble proteins fold into compact polar cores. Quaternary structure: polypeptide chains can assemb structure. The amino acid sequence of a protein determines its th structure.Exploring proteinsPurification of proteins. Determination of amino acid sequences b degradation. Immunology techniques to investigate proteins. Pep automated solid phase. Three-dimensional protein structure dete spectroscopy and X-Ray crystallography.DNA, RNA, and the flow of genetic informationStructure of nucleic acids. Nucleic acid chains with complementar a double-helical structure. DNA is replicated by polymerases that t templates. Gene expression is the transformation of DNA informa molecules. The genetic code. Amino acids are encoded by groups starting from a fixed point. Most eukaryotic genes are mosaics ofExploring genesBasic tools of gene exploration. Recombinant DNA technology. Ma eukaryotic genes. Novel proteins by site-specific mutagenesis.Enzymes: basic concepts andEnzymes are powerful and highly specific catalysts. Classification of Mechanisms of enzyme action. Free energy is a useful thermodyn	
compositions of food (feed) and animal organismStructural and functional classifications of proteins. Primary Struct linked by peptide bonds to form polypeptide chains. Secondary st chains can fold into regular structures such as the α-helix, the β-st loops. Tertiary structure: water-soluble proteins fold into compact polar cores. Quaternary structure: polypeptide chains can assemb structures. The amino acid sequence of a protein determines its th structure.Exploring proteinsPurification of proteins. Determination of amino acid sequences b degradation. Immunology techniques to investigate proteins. Pep automated solid phase. Three-dimensional protein structure dete spectroscopy and X-Ray crystallography.DNA, RNA, and the flow of genetic informationStructure of nucleic acids. Nucleic acid chains with complementar a double-helical structure. DNA is replicated by polymerases that templates. Gene expression is the transformation of DNA informa molecules. The genetic code. Amino acids are encoded by groups starting from a fixed point. Most eukaryotic genes are mosaics ofExploring genesBasic tools of gene exploration. Recombinant DNA technology. Ma eukaryotic genes. Novel proteins by site-specific mutagenesis.Enzymes: basic concepts andEnzymes are powerful and highly specific catalysts. Classification of Mechanisms of enzyme action. Free energy is a useful thermodyn	
and functionlinked by peptide bonds to form polypeptide chains. Secondary st chains can fold into regular structures such as the α-helix, the β-sh loops. Tertiary structure: water-soluble proteins fold into compact polar cores. Quaternary structure: polypeptide chains can assemb structures. The amino acid sequence of a protein determines its th structure.Exploring proteinsPurification of proteins. Determination of amino acid sequences b degradation. Immunology techniques to investigate proteins. Pep automated solid phase. Three-dimensional protein structure dete spectroscopy and X-Ray crystallography.DNA, RNA, and the flow of genetic informationStructure of nucleic acids. Nucleic acid chains with complementar a double-helical structure. DNA is replicated by polymerases that templates. Gene expression is the transformation of DNA informa molecules. The genetic code. Amino acids are encoded by groups starting from a fixed point. Most eukaryotic genes are mosaics of Exploring genesExploring genesBasic tools of gene exploration. Recombinant DNA technology. Ma eukaryotic genes. Novel proteins by site-specific mutagenesis.Enzymes: basic concepts andEnzymes are powerful and highly specific catalysts. Classification of Mechanisms of enzyme action. Free energy is a useful thermodyn	
degradation. Immunology techniques to investigate proteins. Pep automated solid phase. Three-dimensional protein structure dete spectroscopy and X-Ray crystallography.DNA, RNA, and the flow of genetic informationStructure of nucleic acids. Nucleic acid chains with complementar a double-helical structure. DNA is replicated by polymerases that templates. Gene expression is the transformation of DNA informa molecules. The genetic code. Amino acids are encoded by groups starting from a fixed point. Most eukaryotic genes are mosaics ofExploring genesBasic tools of gene exploration. Recombinant DNA technology. Ma eukaryotic genes. Novel proteins by site-specific mutagenesis.Enzymes: basic concepts andEnzymes are powerful and highly specific catalysts. Classification of Mechanisms of enzyme action. Free energy is a useful thermodyn	ucture: polypeptide eet, and turns and structures with non- e into multi-subunit
the flow of genetica double-helical structure. DNA is replicated by polymerases that templates. Gene expression is the transformation of DNA informa molecules. The genetic code. Amino acids are encoded by groups starting from a fixed point. Most eukaryotic genes are mosaics ofExploring genesBasic tools of gene exploration. Recombinant DNA technology. Ma eukaryotic genes. Novel proteins by site-specific mutagenesis.Enzymes: basic concepts andEnzymes are powerful and highly specific catalysts. Classification of Mechanisms of enzyme action. Free energy is a useful thermodyn	ide synthesis by
eukaryotic genes. Novel proteins by site-specific mutagenesis.Enzymes: basic concepts andEnzymes are powerful and highly specific catalysts. Classification of Mechanisms of enzyme action. Free energy is a useful thermodyn	ake instructions from ion into functional If three bases
concepts and Mechanisms of enzyme action. Free energy is a useful thermodyn	nipulation of
the transition state. Catalytic strategies. The Michaelis-Menten m properties of enzymes. Regulation of enzyme activity. Enzymes ca specific molecules. Isozymes: means of regulation specific to distin developmental stages. Covalent modifications and regulating enzy Activation of enzymes by specific proteolytic cleavage.	mic function for ng the formation of del and the kinetic be inhibited by ct tissues and
Carbohydrates Monosaccharides. Complex carbohydrates. Carbohydrate attachm glycoproteins.	ent to proteins:
Lipids and cell membranes Classification and characterization of lipids. Simple and complex li key constituents of lipids. Types of membrane lipids. Common fea diversity of biological membranes. Compartments bounded by int	ures and the

pumps	communication between cells.
Metabolism: basic concepts and design	Characterization of metabolism. Coupled and interconnecting reactions. Oxidation of carbon fuels and cellular energy. Metabolic pathways. Signal-transduction pathways.
Glycolysis and gluconeogenesis	Glycolysis: an energy-conversion pathway in many organisms. Control of the glycolytic pathway. Synthesis of glucose from non-carbohydrate precursors. Reciprocal regulation of gluconeogenesis and glycolysis.
The citric acid cycle	Entry to the citric acid cycle and metabolism through it are controlled. The citric acid cycle as source of biosynthetic precursors.
Oxidative phosphorylation	Oxidative phosphorylation in eukaryotes and mitochondria. Oxidative phosphorylation and electron transfer. The four complexes of the respiratory chain: three proton pump and a physical link to the citric acid cycle. Proton gradient and synthesis of ATP. Regulation of cellular respiration and the need for ATP.
The pentose phosphate pathway	Generation of NADPH and synthesis of five-carbon sugars. The metabolism of glucose 6-phosphate by the pentose phosphate pathway and its coordination with glycolysis.
Glycogen metabolism	Glycogen breakdown and the interplay of enzymes. Phosphorylase's regulation by allosteric interactions and reversible phosphorylation. Epinephrine and glucagon signal the need for glycogen breakdown. The different pathways for glycogen synthesis and degradation. Reciprocal regulation of glycogen breakdown and synthesis.
Fatty acid metabolism	Triacylglycerols are highly concentrated energy stores. Processing stages for the utilization of fatty acids as fuel. Additional steps for the degradation for certain fatty acids. Synthesis and degradation of fatty acids by different pathways. Elongation and unsaturation of fatty acids by accessory enzyme systems.
Protein turnover and amino acid metabolism	Degradation of proteins to amino acids and its regulation. Removal of nitrogen. Ammonium ion and its conversion into urea in most terrestrial vertebrates. Carbon atoms of degraded amino acids act as major metabolic intermediates. Digestion and absorption of proteins. The biosynthesis of amino acids and its regulation. Inborn error in amino acid metabolism.
Nucleotide biosynthesis	Synthesis of the pyrimidine ring and of purine bases. Key steps in nucleotide biosynthesis.
The biosynthesis of membrane lipids and steroids	Cholesterol biosynthesis and its regulation. Important derivatives of cholesterol: bile salts and steroid hormones.
Storage, transfer, and expression of the genetic information	DNA replication, recombination, and repair. RNA synthesis and splicing. Types of RNA molecules. Protein Synthesis. The control of gene expression.
The integration of metabolism	Highly interconnected pathways. Metabolic profiles of different organs. Food intake and starvation induced metabolic changes. Hormonal control of metabolism.

DESCRIPTION OF LAB PROGRAMME

THEME	CONTENT OF THE THEME
Introduction of laboratory	Use of laboratory devices. Laboratory safety. General notions about solutions.
	Titration of solutions with indicators.

methods	Preparation of buffers. Measurement of pH.		
	Volumetric analysis based on reactions of neutralization, reduction-oxidation, precipitation, and complex formation.		
Amino acids	Increase of acidity of an amino acid after commitment of the amino group.		
	Characteristic reactions of detection of amino acids.		
	a) Reaction of ninhydrin		
	b) Reaction of xanthoprotein		
	c) Reaction of tryptophan (Hopkins-Cole Reaction)		
Proteins	Biuret Reaction.		
	Denaturation of proteins after heating.		
	Aggregation of denatured protein.		
	Precipitation of proteins with trichloroacetic acid		
	Identification of casein's isoelectric point		
Enzymes	General characteristics of enzymes' catalytic activity.		
	Determination of enzymes' activity.		
	Reference curves for identification of p-nitrophenol.		
	Acidic phosphatase's catalytic activity.		
	Kinetics of acidic phosphatase in relation to the time of incubation.		
Carbohydrates	General reaction of carbohydrates – Molisch Reaction.		
	Isolation of glycoprotein (mucin) of saliva and detection of additive group		
	Benedict Reaction.		
	Hydrolysis of starch with hydrochloric acid.		
Nucleic acids	Reaction of purines.		
	Qualitative reactions of pentoses - Tollens Reaction.		
	Qualitative reactions of pentoses – Dieshe Reaction.		
	Reaction of phosphate with the Molybdenum Reagent.		

4. TEACHING and LEARNING METHODS - Evaluation

TEACHING METHOD	In class, face to face.		
USE OF INFORMATICS and	PowerPoint and video presentations.		
COMMUNICATION TECHNOLOGIES	Communication with students via e-mail.		
	Teaching support through access to the e-class platform, to on-line databases etc.		
TEACHING ORGANISATION	Activities	Workload per semester	
	Lectures	13	

	Laboratory practice	13	
STUDENTS EVALUATION	 The evaluation on the course's theory consists of: 1. Final written examination on the course's theory (80-100%), consisting of: I. Evaluation of elements of the course's theory II. Short-answer questions III. Multiple choice questions 2. Personal written essay and its presentation 		
	 The evaluation on the course's laboratory practice is determined by the final written examination (100%) consists of: Evaluation of elements of the course's theory Short-answer questions Multiple choice questions 		

5. BIBLIOGRAPHY

•	Diamandides G. (2007). Intoduction in Biochemistry, 3 rd Edition, University St	udio Press,
	Thessaloniki, Greece	

- Katinakis P. (2007). Biochemistry, 2nd Edition, Embryo Editions, Athens, Greece
- Berg J.M., Tymoczko J.L. and Stryer L. (2002). Biochemistry, 5th Edition, International Edition, New York