COURSE OUTLINE

1. GENERAL INFORMATION			
FACULTY/SCHOOL			5 / ENVIRONMENT AND
	AGRICULTURAL ENG		
DEPARTMENT		NOMICS AND DEVELOP	-
		PMENT AND AGRICULT	URAL ENGINEERING
LEVEL OF STUDY	Undergraduate		
COURSE UNIT CODE	3465	Semester:	1st
COURSE TITLE	BOTANY (SYSTEMAT	ICS-PLANT ANATOMY)	
INDEPENDENT TEACHING ACTI	VITIES		
in case credits are awarded for separate compo	nents/parts of the	WEEKLY TEACHNG	
course, e.g. in lectures, laboratory exercises, etc. If	credits are awarded	HOURS	ECTS
for the entire course, give the weekly tea	ching hours		
and the total credits			
	Lectures	3	5
	Laboratory Exercises	2	
Add rows if necessary. The organization of teaching and a methods used are described in detail under section 4	the teaching		
COURSE TYPE	Scientific expertise		
Background knowledge,			
Scientific expertise,			
General Knowledge,			
Skills Development			
PREREQUISITE COURSES:			
LANGUAGE OF INSTRUCTION:	Greek		
LANGUAGE OF			
EXAMINATION/ASSESSMENT:			
•	NO		
THE COURSE IS OFFERED TO			
ERASMUS STUDENTS			
COURSE WEBSITE (URL)	https://oeclass.aua.	gr/eclass/courses/COM	COUR133/

2. LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

<u>APPENDIX B</u>

Guidelines for writing Learning Outcomes

This course provides knowledge necessary for most courses related to plant sciences and crop production. Describes the structure of plant cells, tissues and organs. It provides basic knowledge of proliferation and cytogenetics (mitosis and meiosis). Some operating points are listed so that students will be prepared when they listen to the lectures of the Plant Physiology course and other related courses. A connection is made between the anatomical and morphological characters of plant organisms and their evolution.

The lectures emphasize the structure of cultivated plants and therefore the material is adapted to be taught to students of Agricultural Departments. Examples of applications of the knowledge gained in Agriculture are also provided.

Regarding the subject of Systematic Botany, upon successful completion of the course, students should be able to: • Know basic elements of the evolution and diversity of woody plants and Gymnosperms.

Understand the main apomorphies in the evolution of flowering plants.

Know the diversity and classification within the main groups of flowering plants (Magnoliids, Monocots, Eudicots).
Know the morphological characteristics, main genera and important cultivated species of important families of flowering plants (e.g., Liliaceae, Amaryllidaceae, Iridaceae, Orchidaceae, Poaceae, Papaveraceae, Ranunculaceae, Crassulaceae, Vitaceae, Amaranthaceae, Caryophyllaceae, Violaceae, Fabaceae, Rosaceae, Cucurbitaceae, Betulaceae, Fagaceae, Brassicaceae, Anacardiaceae, Boraginaceae, Lamiaceae, Solanaceae, Apiaceae, Asteraceae).
Understand the structure of the plant body and become familiar with the terminology used to describe the morphological diversity of plant organs (root, stem, leaves, inflorescences, flowers, fruits, seeds).
Identify plant specimens using taxonomic keys.

• Know the principles of the nomenclature of plant organisms.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

.....

Search for, analysis and synthesis of data and information by the use of appropriate technologies, Adapting to new situations Decision-making Individual/Independent work Group/Team work Working in an international environment Working in an interdisciplinary environment Introduction of innovative research Project planning and management Respect for diversity and multiculturalism Environmental awareness Social, professional and ethical responsibility and sensitivity to gender issues Critical thinking Development of free, creative and inductive thinking (Other......citizenship, spiritual freedom, social awareness, altruism etc.)

Environmental awareness Individual/Independent work Group/Team work Development of free, creative and inductive thinking Introduction of innovative research

3. COURSE CONTENT

THEORY

1. Introduction to Botany - Evolution - Modern microscopes and the information gained from their use.

2. The structure of the plant cell (cytoplasm, biological membranes, cell wall, chloroplasts and mitochondria, nucleus, ribosomes, microsomes, endoplasmic reticulum, Golgi apparatus, cytoskeleton, vacuoles, lysosomes, cellular inclusions).

- 3. Growth and division of the cell.
- 4. Tissues: Primary and secondary growth.
- 5. The leaf.
- 6. The stem.
- 7. The root.
- 8. The reproductive organs of angiosperms.
- 9. Evolution and diversity of woody and seed plants

9.1 Lignophytes – Woody plants

9.2 Apomorphies of spermatophytes (seed evolution, pollination droplet, pollen grains, pollen tube, ovule and seed development, seed adaptations, eustele)

9.3 Diversity of gymnosperms (Cycadophytes, Gingophytes, Conifers, Gnetales) 10. Evolution of flowering plants

10.1 Angiosperm apomorphies (flower, stamens, reduced male gametophyte, carpel, two integuments, reduced female gametophyte, endosperm formation, sieve tube members, vessels)

10.2 The origin of angiosperms

11. Diversity and classification of flowering plants: Amborellales, Nymphaeales, Austrobaileyales, Magnoliids, Ceratophyllales and Monocots

12. Diversity and classification of flowering plants: Eudicots (Ranunculales, Proteales, Saxifragales, Vitales,	
Caryophyllales, Rosids, Fabids, Malvids, Lamiids, Campanulids)	
13. Plant identification	
Methods of plant identification	
14. Plant nomenclature	
14.1 Principles of plant nomenclature	
14.2 Botanical names	
LABORATORY	
Exercise 1 - The plant body.	
Exercise 2 - The optical microscope and the plant cell.	
Exercise 3 - Primary anatomy of the root and shoot.	
Exercise 4 - Structure and function of the leaf.	
Exercise 5 - Morphological diversity of plant organs (leaves, inflorescences, flowers, fruits)	
Exercise 6 - Identification of plant specimens (Class Asparagales)	
Exercise 7 - Identification of plant samples (Class Brassicales)	
Exercise 8 - Identification of plant specimens (Class Lamiales)	
Exercise 9 - Identification of plant specimens (Class Solanales)	
Exercise 10 - Identification of plant specimens (Class Asterales)	
	_

4. TEACHING METHODS--ASSESSMENT

MODES OF DELIVERY Face-to-face, in-class lecturing, distance teaching and distance learning etc. USE OF INFORMATION AND COMMUNICATION TECHNOLOGY Use of ICT in teaching, Laboratory Education, Communication with students	Communi	de presentation and black cation with students. process support by access	board. to e-class asynchronous dista Semester workload	ance
Description of teaching techniques, practices and methods: Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, Internship, Art Workshop, Interactive teaching, Educational visits, projects, Essay writing, Artistic creativity, etc. The study hours for each learning	Lat Inc pro and Pei	ctures poratory practice lividual laboratory oject (data processing d commenting) rsonal study tal of Course (25 hours	39 20 10 56 	
activity as well as the hours of self- directed study are given following the principles of the ECTS.	of	workload per ECTS)		
STUDENT PERFORMANCE EVALUATION/ASSESSMENT METHO Detailed description of the evaluation procedures:	DS		in the theory of the course on of 10 short-answer nded questions.	e
Language of evaluation, assessment meth formative or summative (conclusive), mult choice tests, short- answer questions, ope ended questions, problem solving, written essay/report, oral exam, presentation, laboratory work,	iple en-	part of the course inc questions, including q	nation in the laboratory ludes 5 short or open-ende uestions for the es and cell types of plant	ed

otheretc.	
Specifically defined evaluation criteria are stated, as well as if and where they are accessible by the students.	

5. SUGGESTED BIBLIOGRAPHY:

Michael G. Simpson. Plant Systematics. 2017. Utopia (in Greek). Mauseth James D. Βοτανική. 2020. Broken Hill Publishers.

6. TEACHERS:

-Theory:

Georgios Liakopoulos, Associate Professor Panagiotis Trigas, Associate Professor Eleftheria-Perdiko Bareka, Assistant Professor Panagiota Bresta, Assistant Professor Aimilia-Eleni Nikolopoulou, Laboratory Teaching Stuff -Laboratory: Georgios Karabourniotis, Professor Panagiotis Trigas, Associate Professor Georgios Liakopoulos, Associate Professor Dimosthenis Nikolopoulos, Assistant Professor Eleftheria-Perdiko Bareka, Assistant Professor Panagiota Bresta, Assistant Professor Aimilia-Eleni Nikolopoulou, Laboratory Teaching Stuff Eleni Papazoglou, Laboratory Teaching Stuff Panagiotis Georgiou, Laboratory Teaching Stuff