COURSE LAYOUT

1. GENERAL

SCHOOL	APPLIED ECONOMICS AND SOCIAL SCIENCES				
DEPARTMENT	AGRICULTURAL ECONOMICS AND RURAL DEVELOPMENT				
DEPARTMENTS	Agricultural Economics and Rural Development /				
(Teaching to)	Biotechnology / Crop Science				
STUDY LEVEL	Undergraduate				
COURSE CODE	3445 SEMESTER 2 nd / 4 th				
COURSE TITLE	COMPUTER PROGRAMMING AND APPLICATIONS				
INDEPENDENT TEACHING ACTIVITIES			WEEKLY		
			TEACHING HOURS	ECTS	
Theory: Lectures		2			
Laboratory: Use of Software Tools		3			
Total		5	5		
COURSE TYPE	Scientific Area				
PREREQUISITES					
LANGUAGE	Greek				
IS THE COURSE	Yes (in Greek)				
OFFERED for					
ERASMUS STUDENTS?					
COURSE WEB PAGE	https://oeclass.aua.gr/eclass/courses/AOA241/				

2. LEARNING OUTCOMES

Learning Outcomes

Upon successful completion of the course the student will

- have acquired the fundamental principles of programming, algorithmic structures and software development techniques,
- acquire programming skills in a high-level programming language environment,
- be able to combine the various algorithmic structures and instructions of a programming language,
- acquire the ability of composing programs which solve specific problems not only in the field of his/her scientific field but, more generally, scientific or other problems of practical interest,
- be able to process by programs big volumes of data,
- cease being restricted by the dedicated capabilities of existing software packages and will be able to develop software for the solution of special problems,
- acquire a broader analytic and synthetic way of thinking and of skills for the solution of a problem (not necessarily of a problem that requires a computer program) by splitting it into simpler problems that achieve intermediate targets.

General Competences

- Search, analysis and synthesis of data and information by use of the necessary technologies.
- Adaptation to new situations.
- Decision making.
- Individual work.
- Team work.
- Work in a multidisciplinary environment
- Development of judgment and self- jugment
- Advancement of free, creative and deductive thinking.

3. COURSE CONTENT

Theory

1. Algorithms and problem solving

- 2. Programming development environment
- 3. Introduction to structured programming
- 4. Fundamental and user-defined data types
- 5. Variables, Operations, Expressions
- 6. Use of programming objects
- 7. Input of data / Output of results
- 8. Conditions Program control structures
- 9. Iteration structures
- 10. Management of Arrays
- 11. Built- in and user-defined functions and Procedures
- 12. File management
- 13. Debugging and error handling
- 14. Link of program with other environments

Laboratory

Training on all the above, hands on computer.

4. TEACHING and LEARNING METHODS - Evaluation

4. TEACHING and LEARNING METHODS - Evaluation					
TEACHING METHOD	In Classroom and in Laboratory (face-to-face) or Distance				
	Learning (if required). On the web page of the course there				
	is posted educational material for asynchronous distance				
	learning.				
	J J				
USE OF INFORMATICS	Exploitation of Information and Communication Technologies				
and COMMUNICATION	in teaching, in laboratory training and in the communication				
TECHNOLOGIES	with students.				
	Use of dedicated software. Use of integrated e-learning system.				
	Communication with students via open eclass platform and				
	e-mail.				
TEACHING	Activity	Work Load			
ORGANISATION	Lectures	26 hours			
	Laboratory work	39 hours			
	Group and/ or individual projects	15 hours			
	Individual study	45 hours			
	Total contact hours and training	125 hours			
STUDENTS EVALUATION	I. Final written examination: Code writing in a programming language, mainly on computer and, alternatively in classroom, which concerns the solutions of problems of practical interest				
	II. Weekly Laboratory exercises: Construction of simple programs concerning the study material of the week.				
	III. Group or Individual Project: Construction of programs concerning practical problems. The evaluation concluded with an oral presentation.				
	The final grade is the sum of evaluations. Rating Scale: 0-10 Minimum Grade: 5	f the above individual			
	The assessment criteria are explicitly defined and can be found on the eClass page of the lesson. Students can have access to their written examination and software records.				
	If required, students' evaluation remotely through the eClass p examination, and through video	latform for the written			

presentation of projects or oral examinations.

5. BIBILIOGRAPHY

-Proposed literature:

- 1. MANOS KAFES, EXPLORATION OF PYTHON, 1st EDITION, 2017, KLEIDARITHMOS PUBLICATIONS LTD, Athens.
- 2. TONY GADDIS, STARTING WITH PYTHON, 2020, DA VINCI PUBLICATIONS M.E.P.E., Athens.
- 3. Stratos Kalafatoudis, Georgios Stamoulis, Programming with Python, 2018, NEW TECHNOLOGIES PUBLICATIONS PRIVATE CAPITAL COMPANY, Athens.
- 4. Nikolaos Avouris, Michail Koukias, Vassilios Paliouras, Kyriakos Sgarbas, Python Introduction to computers (4th Edition), 2018, FOUNDATION OF TECHNOLOGY & RESEARCH-UNIVERSITY PUBLICATIONS, KRITI.
- 5. Karolidis Dimitrios A., Learn easily Python, 2018, Xarchakou Penelope., Athens.
- 6. Nikolaos Samaras, Konstantinos Tsiplidis, The book of Python, 2019, Kritiki Publications., Athens.
- 7. MATTHES ERIC, PYTHON PROGRAMMING LANGUAGE THROUGH EXAMPLES AND EXERCISES, 2020, DISIGMA Publications IKE, Thessaloniki.

-Related scientific journals:

- 1. Bioinformatics, Oxford University Press.
- 2. Science of Computer Programming, Elsevier.
- 3. Applied Computing and Informatics, Elsevier.
- 4. Journal of Bioinformatics and Computational Biology, Imperial College Press.