COURSE LAYOUT

1. GENERAL

II GLIVE						
SCHOOL	APPLIED BIO	APPLIED BIOLOGY & BIOTECHNOLOGY				
DEPARTMENT	BIOTECHNOLOGY					
STUDY LEVEL	Undergraduate					
COURSE CODE	218	18 SEMESTER 6th				
COURSE TITLE	BIOPHYSICS					
INDEPENDENT TEACHI	ACHING ACTIVITIES WEEKLY TEACHING HOURS			ECTS		
LECTURES		LECTURES	3	3.5		
PRACTICAL EXERCISES		2	1.5			
TOTAL			5			
COURSE TYPE	Scientific Specialization					
PREREQUISITES	Physics, Biochemistry					
LANGUAGE	Greek with English support in terminology					
IS THE COURSE OFFERED for ERASMUS STUDENTS?	YES (in English)					
COURSE WEB PAGE	https://oeclass.aua.gr/eclass/courses/BIOTECH131/					

2. LEARNING OUTCOMES

Learning Outcomes

The course is a basic introductory course in Biophysics techniques used in the analysis of the structure of biomolecules (proteins, DNA, RNA) such as X-ray crystallography, scattering techniques, multidimensional NMR, molecular dynamics as well as other quantitative techniques such as calorimetry, circular dichroism and fluorescence spectroscopy. Finally, the course aims to help students understand the applications of these techniques in the design of drugs and other bioactive molecules.

Upon successful completion of this course the student will be able to

- Have an understanding the basic features of the biophysical methods
- Is capable of knowing when to use these methodologies
- Analyze and calculate basic information
- Present the results of a relevant study

General Competences

Search , analyze and synthesize data and information, and the use of essential technologies Teamwork

Work in a multidisciplinary environment

Search, analyze and synthesize data and information, and the use of essential technologies

3. COURSE CONTENT

Theory: Review of the structure of biological macromolecules. Thermodynamics and calorimetry. Molecular Mechanics. Crystals. Crystallization. Theory of x-ray diffraction. Reciprocal space. Crystallographic symmetry. Structure factors and Intensities. Data Collection. Electron Density Function. Approaches to the Phase Problem. Structure refinement. Radiation scattering from solutions of macromolecules. Absorption & CD spectroscopy. Fluorescence spectroscopy. NMR Spectroscopy. Applications in drug design and Nanotechnology **Laboratory:** Determination of thermodynamic parameters for salt dissolution, crystallization of lysozyme, diffraction experiments with lysozyme crystals, analysis of electron density map for lysozyme-ligand complex, fluorescence microscopy image processing, construction of molecular model.

4. TEACHING and LEARNING METHODS - Evaluation

4. TEACHING and LEARNING METHODS - Evaluation					
TEACHING METHOD	In suitably-equipped teaching rooms				
USE OF INFORMATICS and	Use of powerpoint slides, e-crystallography				
COMMUNICATION TECHNOLOGIES	simulations, videos, etc. in lectures, use of e-class				
	website system for informat				
	(quiz), availability of educational material, delivery &				
	grading of exercises, assessment with tests before				
	laboratory exercises and communication with students.				
TEACHING ORGANISATION	Activity	Work Load			
	Lectures	39			
	Laboratory exercises	10			
	Group and/or individual	20			
	assignments				
	Independent study	51			
	12 optional weekly quiz	3			
	Final Exam	2			
	Course total				
	(25 hours of student work	125			
	loadper ECTS)				
STUDENTS EVALUATION	I. Theory: Written final examination (100%)				
	comprising: multiple choice questions, problem				
	solving and short answer questions. Optional quiz				
	exercises (30% grade)				
	II. Laboratory: Tests before each laboratory				
	session (15%), written assignments on the				
	laboratory exercises (50%), final personal				
	assignement (35%).				
	assignement (33 /0).				

5. **BIBILIOGRAPHY**

- 1. Principles in Physical Biochemistry (van Holde, Johnson, Ho) 2nd Edition
- 2. Themata Moriakis Biofysikis (Hamodrakas) Symmetria publications