COURSE LAYOUT

1.	GENERAL					
	SCHOOL	Animal Biosciences				
	DEPARTMENT	Animal Science				
	STUDY LEVEL	Undergraduate				
	COURSE CODE	16 SEMESTER 3rd				
	COURSE TITLE	Principles of Animal Breeding				
	INDEPENDENT TEACHI	NG ACTIVITIES	WEEKLY TEACHING ECT HOURS		ECTS	
	Theory				3	
	Laboratory Practicals			2		5
				tific area		
	(Foundation course, General					
	knowledge, Scientific area,					
	Developing skills)					
	PREREQUISITES					
	LANGUAGE	Greek				
	IS THE COURSE OFFERED for	Yes				
	ERASMUS STUDENTS?					
	COURSE WEB PAGE	https://mediasrv.aua.gr/eclass/courses/EZPY101/				

2. LEARNING OUTCOMES

Learning Outcomes

This is an introductory course in the field of Animal Breeding. After course completion, the student is expected to have learned:

- That livestock populations (breeds, herds etc) are forming gene (alleles) pools. The genetic makeup of these populations can be described via suitable terms (e.g. allelic and genotypic frequencies) and is subjected to laws of Population Genetics such as the principle (law) of Hardy-Weinberg (Genetic Equilibrium). Of major importance for a population is genetic diversity that can be described with help of various measures (e.g. expected and observed heterozygozity etc).
- That genetic constitution of livestock populations can also change as a result of various forces causing departure from genetic equilibrium (e.g. migration, natural and artificial selection, genetic drift, mutation, mating system etc).
- On the mode of inheritance of Quantitative Traits (QNT) in livestock populations. Among others, QNT comprise genetic polymorphisms (e.g. microsatellites, SNPs etc), lethal genes and/or genes associated with genetic disorders as well as major genes (e.g. Booroola gene).
- On the mode of inheritance of Quantitative Traits (QLT), the mode of action (additive, dominance, epistasis and pleiotropy) as well as the importance of systematic environmental effects in determining the phenotypic values of various production and reproduction traits.
- The concept, methods of estimation and importance of heritability (broad and narrow sense).
- The concept, methods of estimation and importance of repeatability.
- The concept, methods of estimation and importance of genetic, environmental and phenotypic correlation.

General Competences

- The 13 practicals combine individual and group working ability.
- Individual and group assignments are aimed to enhance students' skills development associated with ability to search, combine and present scientific information mined from references and the

internet.

• Group assignments are presented in class and are followed by detailed analysis and discussion aiming to development of students' critical thinking.

3. COURSE CONTENT

- Population Genetics: principle of Hardy-Weinberg Equilibrium (HWE). Properties of populations under HWE. Factors causing departure from HWE (selection, mutation, migration, genetic drift).
- Qualitative and Quantitative Traits. Mode of inheritance and typical examples per trait group.
- Quantitative Genetics: phenotypic value, genotypic values, breeding value, covariance between relatives, additive allelic effects, dominance deviation, degree of dominance, pleiotropy, broad and narrow sense heritability, repeatability, genetic and phenotypic correlation.

4. TEACHING and LEARNING METHODS - Evaluation

4. TEACHING and LEARNING MET					
TEACHING METHOD	in person Class teaching				
USE OF INFORMATICS and	Use of e-class tools during practicals and communication				
COMMUNICATION TECHNOLOGIES	with students				
	with students				
TEACHING ORGANISATION	Activities	Workload per semester			
(Lectures, individual or group	lectures	36			
assignments, field trips, individual	Practicals in class groups	26			
study et.c.)	Group assignments (max 4				
	students)	15			
	Individual assignments	10			
	Individual study	38			
	,				
	Total contact hours and	125			
	training	125			
STUDENTS EVALUATION	training				
STODENTS EVALUATION					
	Evaluation is performed in Greek language.				
	• The final theory grade is a weighted average of group				
	assignment scores (25%) and final written exam scores				
	(75%). Written exam is in form of multiple choice				
	questions.				
	• The final practicals grade is a weighted average of				
	individual assignment scores (10%) and progress exams				
	scores (90%) or 100% final written exams scores.				

5. **BIBLIOGRAPHY**

- E. Rogdakis, 2006: Animal Breeding, Stamoulis, Edts.
- Banos, G, 2010. Basic Principles of Genetics and Heredity.
- Bourdon R. M. (2000): Understanding Animal Breeding (second edition), Prentice Hall.

-Journals:

- Journal of Animal Breeding & Genetics
- Journal of Animal Science
- Journal of Dairy Science
- Journal of Applied Genetics